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Abstract

The first part of this paper briefly de-
scribes the optics code used at Los Alamos Na-
tional Laboratory to do optical analyses of vari-~
oua components of a free electron laser, The
body of the paper then discusses the recent re-
sults in modeling low frequency gratings and
ripple on the surfaces of liquid-cooled mirrors.
The ripple is caused by structural/thermal ef-
fects in the mirror surface due to heating by
optical absorption in high power resonators. Of
interest is how much ripple can be permitted
before diffractive losses or optical mode distor-
tions become unacceptable, Preliminary work is
presented involving classical diffraction prob-
lems to support the ripple study. The limita-
tions of the techniques are diacussed and the
results are compared to experimental results
where available.

Introduction

This paper is a conti{nuation of a previoua
one, which discusased the optical analysis of a
grazing incidence, optical resonator intended for
use in a Free Electron Laser (FEL) at Loa Alamos.
The emphasis was on the comparison of the gode to
experiment. The present paper will continue this
efforv and analyze the modeling of the surfaces
of liquid-cooled mirrora when high power laser
beams are incident on them. The ultimate uim in
*hese analyses is to be able to deaign optica
needed for the FEL, which take {nto account the
various tolerancea neceasary for the components
of an efficient and practical system.

-

Preacnted firat will be a brief discusaion of
the optics code, Ceneral Laser Analysis and De-
aign Code (GLAD), umed in the analysia. Next,
preliminary casea are presented, coasisting of
clzasiocel diffraction problems, i{n which the code
ia compared to arnclytically derived cases, The
study oconaistec of running the following estab-
lished textbook cases: the square and ciroular
apertures, Young's slits (two-alit problem), and
the four and alx alit gratings. Oenerally, there
ia very good agrrement with the analytically
derived valuea. For the four-altt case, there
ara some differences {n the reaults and the disa-
greemants incressns with the increase in the num-
ber of alita analyzed. The code in limited by
the finite array in the Faat Fourier Transform
teohnique uned in the code. ‘ ,

Following thia s & repor: of the results of
modeling ripple on liguid~cooled mirrors oaused
by thermal diatsrtion. The mirror model used
hero assumea that the coolnd mirrora have a aub-
struoture oonaiating of a gri¢ of aquare cella
through which the fluid ficwa., When a high power
beam i{a incident on auch A aurface, the aurface
deformationa reaulting from heat abaorption ap-

proximate a s{nusoidal ripple across the mirror
in two directions. This effect can be modeled as
a very low frequency grating. The reaonator con-
figuration used for this case consisted of two
normal incidence, spherical mirrors, with a graz-
ing incidence, hyperboloidal, beam erxpanding
mirror in between. Thia cavity has been de~
scribed in detail and analyzed in Reference 1.
The large angle of incidence (86°) at the grazing
incidence mirror complicates the ripple patterns.
This case has been successfully modeled.

In conclusion, it is shown that the code is
successful in analyzing the low frequency ripple
situations encountered in the resonator optics
for the FEL. The analysis to date has already
produced results which provide direction for
practical design of FELs. Losses due to diffrac-
tion from the ripple could be significant.

Description of the GLAD Code and Its
Application to the Optical Analysis
of Free Electron Lasers

The GLAD oode used in the modeling of effects
described in this paper ia the latest in the
series of LOTS diffraction propagation codes, de-
veloped over the yearas. This series of codes has
been developed by Applied Optics Reaearch, the
Air Force Weapons Laboratory, and the Los Alamos
National Laboratory. The Jde uses Fast Fourier
Tranaform and ray tracing techniques to analyze
optical systems from end to end.

Historically, the codes that have been devel-
oped and used for the design and analysis of
Jaser optical systems with resonatora and tilted
components have been paraxial in nature. Calou-
lations and corrections of optical aberrationa in
the aystem were done with off-line codes and
folded aystems were modeled by "unfolding" the
syatem. Suoh codes and techniques are inadequate
to design and analyze grazing incidence reasona-
tors (with tilted components) which are encoun=
tered in the FELA of interest. Thene
difficulties and the developm~..l of a diffraction
routine with exact, ray aberration calculationa
for grazing incidence optios used in arditrarily
tilved and decentered ayatems h,vo been deacribed
in detail in a previous paper, This approach
hua been auccesaafully implemented in the GLAD
code and the analyals herein umea thia approach.

Briefly, to desoridbe the propagation of
bean through a complex three-dimenaional optical
system, the code defines four coordinate ayatems:

GLOBAL =~ Ray and vertex locationa.

RAY - Complex amplitude diatributionsa.
VERTEX =~ Component rotationa and ahape defini~
tionnm,

SURFACE - Surface at chiefl ray intercept point,



The global coordinate system allows compo-
nents to be positioned and rotated arbitrarily.
Exact aberrations are calculated for components
in aligned or misaligned configurations by using
ray tracing to compute optical path differences
and diffraction propagation. The optical path
differences between components and beam rotations
in complex mirror systems are calculated accu-
rately.

The code has a modular structure and is
therefore very versatile in nature. User defined
modules are also permissible, such as a single
pass through a fully three-dimensional resonator
cavity, These modules can then Le called any
number of times. Thus, the GLAD code enables the
determination of the properties of the optical
beam passing many times through a very compli-
cated FEL system. The next sections describe the
results obtained using this code for the problems
studied.

Compari{son of Code to Classical Problems

Preliminary cases were run to demonstrate
that the code {s working courrectly. These cases
consist of modeling square and circular apertusea
and ocomparing the results to the expected ainc
function (sinc(x) « sin(x)/x) and to the Airy
pattern, reapestively. These examples are found
in Born & Wolf~ and Schaums Outline Series on
Optics.

The square aperture case, as set up to run on
CLAD, consisted of a plane wavefront impinging
no~mally on a square aperture (0.4 cm x O.bL cm),
which was then propagated through a lena of focal
length 5000 cm and then to the focal point. To
obtain the best agreement required the use of 2
large array (256 x 256). For the circular case
the setup was the same except for the aperture,
which was 0.4 em {n diameter, The wavelength
used was 0.65 um.

Ihe comparison of the GLAD resultsa to the
sina® function showed very good agreement. The
amplitude of the firat diffraction lobe agreed to
within 1.2% of the theory. The mecond lobe had a
1,08 error and the third lobe had an 8.0% error.
For the ciroular aperture, agreement of the code
with the Airy pattern was very good for the firast
diffraction ring, (0.4% error). The agresment
for the seocond and third ringe was not as goou
with errors of 10.% and 4.9 respeotively.

The next set of cases was multiple slit prob-
lema (two, four, and axn alita), again chosen
from text book examples” in an attempt to tie the
code results to those of well known problems
which have been verified by experiment.

The two-alit case, alao known as YOung'e
experiment, as aet up for the ocode, has slit
widtha of b » ,0! om and a slit meparatioh of
& = .05 om. The slit meparation ia measured be-
tween the middlea of the two slita. The sxpected
reault is a_seriea of fringes under an envolope
of the ainc® funotion. The quantity M = a/b
pradiota whioh rrlgcoa will coincide with the
minima of the aino® funotion and henoe will be
misaing. For this care, every fifthth frin. e
should Le miaalng. After judicloum aelection of
the unit aize for the array apacing between
pointa, very good agreement was obtained with

theory; the rifth, tenth, fifteenth, and twventi-
eth fringes were missing (Fig. 1).

There is a problem, however, in choosing an
appropriate unit size for the array spacing. The
results are affected by the number of array
points that fall within the slits and their posi-
tions relative to the slits. By changing the
array spacing a minute amount, one can pull one
more array point in or out of the alit width,
which can change the problem dramatically. In
many cases every sixth fringe was missing instead
of every fifth, and in cne case every seventh
fringe was missing. This is beat understood by
analyzing the problem the code is working, which
is an approximation of the desired problem.

Using the above probtlem with slit widths b
and separation a, the code will approximate these
distances by putting a certain number of array
points within the s3lits. The number is deter-
mined by the unit size, Let the two slits be
centered about the origin, and the unit sizz or
the distance between array points dbe u, Let tne
firat and last points t¢ fall within the slit be
m and m ¢+ n respectively. Thus the slit wi{dth
the code !s actually using is the unit size times
n. That .s, it is not b but b' = nu, where the
prime indicates the approximate values the code
is using. The slit separation, which is measured
from the midule of one slit to the middle of the
other slit, is then a' = 2mu * nu. Hence the
miaaing fringe will be given by:

a' 2m .+ n
n

M' = e B She-ec

In two separate ocases the unit sizes were
chosen to be 7020 om and .0019 om respectively
for an array size of 256 x 256, For tha firat
cuse, the oode seleciad m = 10 a3 the first array
print to fall within the slit, and the alit width
encompassed five array points, {e. n = 5, Hence
M' e &, whinh is exactly the original problem,
However, for the second caae where n = ,0019 om,
the code seleoted the fira* point to fall within
the alit aa m = 12 and the alit width was n = &,
Hence M' = 7, which meana the seventh fringe was
auddenly missing with only a alight change {n the
it slze.,

For all the cusea with a unit size smaller
than u = ,0015 om. the missing fringe was alwaya
the fith one. This says that the amaller the
unit aize (or the greater the resolution) the
more reliably the node can perform the problem,
whioh atands to reascn. For this partioular
problem, thias translates i{nto a requirement of at
least seven points within the alit width,

The four=alit and rix~ali* problema were aet
up with tha same olit width and alit aeparation
a8 in the two-alit problem. Extra alits were
adder outalde the original two. The expected
reaulta aru ve'y aimilar to the two-mlit canme
except that the bright firinges become narrower.
The fringe positiona and the misaing fringes
should remain the same. Flgura 2 showa the two-
Alit problem sgain exuspt with a different unit
ajzte. Thim {a 1noluded for comparison to the
four=~ and aix~alit problema with the same unit
aize, which ar) shnwn In Figa. 3 and 4, The GLAD
reacits ugree very well with the narrowing of the
bright fringer and their poaitiona, The miaaing
fringea, however, were not totally abaent, al-



though fringe number five does have a deep notch
in it (see Fig. 3). This problem was more pro-
nounced in the six slit case (see Fig. 4). Over-
all, though, agreement with theory is very good.

It can be concluded, from this first study,
that the code does handle simple diffraction
problems correctly. Since these classic problems
have been verified by many experiments over the
years it has been demonstrated that the code
agrees well with experiment both in intensity and
spatial distribution., There are problems, how-
ever. Due to practical limits on the array size,
the code lacks the resolution required to model
high spatial frequency gratings.

Modeling Ripple on Liquid-Cooled Mirrors

The mirrors of high powered FELs will experi-
ence power densitles high enough to damage ordi-
nary mirror surfaces. Therefore an effort is
underway to design, analyze, and buiid mirrors
that are cooled by flowing a fluid through a
substructure under the mirror surface. The re-
sults to date of the analysis performed on the
code GLAD are presented in this section.

The mirror design considered for thia analy-
8is assumes that the substructure consists of a
grid of square cells through which the fluid will
flow. A high powered beam will cause a certain
amount of distortion of the mirror surface. The
square grid substructure will, consequently, show
through on the surface as linear ripple in two
directions across the mirror surface. This may
be thought of as a very low frequency, sinusojdal
grating.

The resonator used {n this analysia is de~
scribed in detail {n reference ). Briefly,
though, it consists of two apherical, normal
incidence mirrors and one grazing incildence,
off-axis, hyperboloidal, beam expanding mirror
(see Fig. 5). The grazing incidence angle is
about 86°. The right hand sphere is positioned
8o that its radius of ocurvature i coincident
with the fécua B of the hyperbola, so that the
beam 18 intercepted at normal incidence and re-
turned back on itself, Tharefore, the radius of
curvature of the sphere is imaged at focua A of
the hyperbola. The radius of ocurvature of the
left hand sphere overlaps the image at foous A
thus creating a near concentric reaonator. The
waist appears within the overlap region at posi-
tion wye The overall length of the resonator
{8 approximately 64 m, The wavelength used in
this analyais {s 0.6328 ym., For a stable GCausai-
an mode, w, = 0. 0863 em waa used (w, 18 the beam
half wldth at 1/e¢“ of the 1ntenniby).

For this atudy, ripplea are added to the
right hand aphere and to the grazer; but none to
the left hand sphere. The grid struocture of the
aphere is made up of 1/U4 {nch aqusrea and that of
the grazer is 1/8 Inth aquarea. Hence, the peri-~
ods of the alnumolidal ripple are 1/4 incoh And 1/8
inch reapectively for the two mirrora.

Adding the ripple to the apheore ia very
atralghtforward since the beam ia normally {noi-
dent on the mirror. However, for the grazer it
is complicated by the extreme grazing incidence
angle. The ripple in one tranaverae direotion
will be foreahortened and hence will appear to

the beam to have a much higher spatial frequency
than {n the other transverse direction. The

' amplitude of the wavefront error, however, will

be reduced uniformly across the surface of the
mirror by the tilt of the grazing incidence angle
(a factor of cos 86°). Thus the tolerance on
figure error for the grazer doesa not have to be
as tight as for the sphere. The period of the
foreshortened ripple is about 0.021 cm, which is
approximately half of the spacing for the slits
in the previous section of classical problems;
therefore an array of double the size (512 x 512)
was used for the ripple study.

One last cubject that must be discussed be-
fore the results can be presented is the resolu-
tion in both the near and far field. The unit
size is chosen initially at the beam waist where
the wavefront is flat. The unit size in the far
field (at either mirror position) is then deter-
mined by the code using the formula: u' = Az/Nu
(a result of Fourier Transform Theory). The unit
sizes in the near and far fields are u and u', A
is the wavelength, z is the distance propagated,
and N 13 the array size, This {s an inverse re-
lation which says that for greater resolution {n
the far field one gives up resolution in the near
field and vice versa. The code has an automatic
mode for the choice of the initial unit size such
that the resolution in both the near and far
fields are equal. For the present study, this
mode was not employed, because greater resolution
was required at the mirrors. Care must be taken
when doing this, because aliasing can become a
problenm.

A case of an unaberrated resonator was run
for one hundred passes to demonstrate that a
stable Gauasian mode exists; this run agreed well
with analytical caloulations. The results of the
ripple study are from cases based on the wvaist
parameters of this stable mode. These canes are,
however, run for only a single round trip pass.
This study, therelore, indicates how a stable
mode ia affected by the ripple added to these two
mirrors for a single pass. Sirce the resolution
was not the same in the near and far fielda, it

.Was felt that th2 reaults of multipass runs would

be questionable, 8o none were run., For the un-
aberrated case the resclution was allowed to be
ejual in both tha near and far fields.

Two cases will be disoussed here. The firat
assumed the pame surface error due to ripple on
both mirrors (1/20 wave peak to valley) and fur
the second case a more restrictive tolerance wuas
placed on the sphere (1/100 wave peak to valley),
while the grazer remained the same.

Figure 6 shows the results at the waiat for
the firat case. It shows the diffraction pattern
due to ripple on both the grazer and the aphere,
The x and y axes are tranaverae to the beam prop~
agation direction. To matisfy the Nyquist mam-
pling oriteria (of at least 4 array pointa under
each period of the ainuaoidal ripple), greater
resolution waa req.iired at both mirrora., Thia
implies lower resolution in the near fleld (at
the waiat). That is why, in Fig. 6, the Cauasi-
an-1ike beam appearn aa a spike in the center of
the three-dimenaional plot. A 512 x 512 array
wan uaed for this problem and the array apacing
was u = .06 cm at the waiat w,. Figures 6-12 are
all based on this array aize and apacing and all



have been cropped off at 8 cm. The fileld size for
this array is about 15 cm (where the origin is in
the center of the array).

Meeting the Nyquist criterja for the ripple
on the sphere waa easily accomplished, but for
the foreshortened axia of the grazer to meet the
criteria, a 512 x 512 array was required. By
analyzing the results in Figs. 6-9, one finds
that all the diffraction lobes are identifiable.
The four spikes in Fig. 6 that are equidistant
from the central beam are due to the ripple on
the sphere. They are at a distance ry = 1.54 em
from the center. The two smaller spikes, in
close to the central beam and along the x axis,
result from the untilted transverse axis of the
grazer, These spikes can also be seen in Fig. 7
which is a "alice" through the three-dimensional
plot along the x axis (y=0). The s0lid line is a
plot of the intensity at the waist and the dashed
line is a plot of the phase. The vertical scale
has been chosen to emphasize the low intensity
diffraction lobes; hence the main beam is off
scale. The peak intensity is indicated in the
margin. Jn Fig. 8 the diffracticn lobes due to
the tilted transverse axis of the grazer are
found near the edge of the plot at about
r=7.5c0m. Figure 8 {s a "slice" along the y
axis of Fig. 6.

Figure 9 {s a power-in-the-bucket plot and
sums up the power in circular rings of increasing
radii that are centered on the main beam. Tae
total power has been normalized to one so that
the fractional power is displayed on the vertical
axis, and the horizontal axis {s the distance
from the center of the beam. Each set of spikes
that {s equidistant firom the center of the beam
appears as a step in this plct, The main beam
has 66% of the power in it, which accounts for
the initial step up to .659. The first step to
the right of that, to .663, is caused by the two
apikes on the x axis, which are caused by the
ripple of the untilted axis of the grazer. The
step due to the tilted axis is found on the er-
treme right hand side of Fig. 9, a» a small step
at approxigately r = 7.5 cm.

The remainder of the steps result from the
ripple on the sphere. The four largest d{ffrac-
tion lobss account for the largest step (from
«663 to .9%3). Each of the next two steps to the
rignt of that are naused by a set of very faint
lobes &t equal radi!, which when taken together
add up to the amall atep. They lie on a grid of
squares with sidea of dimenaion ry = 1,54 om, 8o
that they fall on diagonals out from the central
baam at distances of r,/2 and rv5. Becauae of
their very low {ndividual power, they do not show
up well on the intensity plote,

All of the power thrown out into the diffrac-
tion pattern repremcnts . 10as in the laser remo-
nator. For the 2aae shown in Figa. 6-9, thie ia
approximately a 3435 loaa per pans. For the case
shown in the next plots, Figa. 10-12, the toler-
ance on the sphere was decreased to 1/100 wave of
surface error (peak to valley). Figures 10 and
11 show the x and y axin of the beam at the waist
and the subatantially reduced diffraction pat-
tern. Figure 12 miows the power-in-the-bucket
plot for thia cane and a significant improvement
in the losa, which {a about 3% loas per pama. To
ssnarate the ~ffects of the two mirrora, the

ripple was placed only on the grazer for the case
shown in Fig. 13 and only on the sphere for the
case shown in Fig. 14, The two steps seen in
Fig. 13 are due to the two different spatial
frequencies of ripple on the grazer and the sin-
gle step in Fig. 14 is due to the one frequency
of ripple placed on the sphere.

The conclusion drawn from this study is that
GLAD can model ripple of the cooled mirrors very
well. Furthermore, ripple can cause a signifi{-
cant loss in the laser resonator, and the sphere
is the more sensitive of the two mirrors in this
problem. It should be pointed out that the 3%
loss per pass is a worst case, because the ripple
was applied urniformly across the mirrors in the
calculations. In reality, since the ripple is a
function of the beam intensity and since the beam
would be approximately Gaussian, the amplitude of
the ripple will be greatest at the center of the
beam and will fall off to near zero in the wings.

Conclusion

From the studies presented in this paper, it
can be concluded that the code GLAD handles dif-
fraction problems correctly. Its results compare
very well with classical text book solutions. The
code was used to analyze the problem of ripple on
liquid-cooled mirrors with a square grid sub-
structure. The results show that for a practi-
cal, efficient FEL resonator, ripple will have to
be controlled very well. Ripple will also be a
more serious proolem for the normal incicdence
mirrors than for the grazing incidence mirrors.
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DIFFRACTION PATTERN AT WAIST, X AXIS

POWER-IN-THE-BUCKET FOR GRAZER AND SPHERE
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FRACTIONAL POWER

POWER-IN-THE-BUCKET FOR GRAZER ONLY - : POWER-IN-THE-BUCKET FOR SPHERE ONLY
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